Radon és leányelemeinek kicserélődése a geoszférában

> Daróczi Henriett Környezettudományi Doktori Iskola Nyomgáz ülepedés modellezése KÖR 2/2/42

A légköri radioaktív anyagok csoportosítása keletkezésük szerint:

- 1. Földfelszínen keresztül a légkörbe jutó radioaktív izotópok és bomlástermékeik
- 2. A kozmikus sugárzás és a légköri gázok molekuláinak kölcsönhatásából származó radioelemek
- 3. Mesterséges radioaktív izotópok

Table 1. Radionuclides and their activity concentration range in the free atmosphere near ground level (United Nations, 1982; Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit, 1984; Porstendörfer et al., 1990)

Radionuclide	Half-time		Activity concentration (mBq m^{-3})
Natural	³ H	12.3 a	≈20
	¹⁴ C	5736 a	≈ 40
	⁷ Be	53.6 d	1–7
	RnD*	$164 \mu s - 26.8 min$	1000-50,000
	²¹⁰ Pb	22.3 a	0.2-1
	²¹⁰ Po	138.4 d	0.03-0.3
	²¹² Pb	10.6 h	20-1000
	²¹² Bi	60.6 min	10-700
Artificial	¹³¹ I	8.04 d	< 0.0001 (16,000 ⁺)
	¹³⁷ Cs	30.1 a	0.0005-0.005 (4000†)
	¹⁰⁶ Ru	386.2 d	0.0001–0.002 (2000 [†])

* Short-lived radon daughters: ²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi and ²¹⁴Po.

⁺ After the nuclear accident in Chernobyl the highest value in Göttingen, 2–3 May 1986.

J. Porstendörfer (1994)

Radionuklid viselkedése a környezetben függ:

- •Kémiai karakter
- •Élettartam

Rn fizikai és kémiai tulajdonsága miatt nagy mozgékonysággal rendelkezik •Gáznemű, kémiailag inert nemesgáz •3,8 nap felezési idő

Izotóp jele	Hagyományos	Bomlási sor	Közvetlen	Felezési ideje
	neve	kezdő eleme	szülőeleme	
²²² Rn	radon	²³⁸ U	²²⁶ Ra	3,8 nap
²²⁰ Rn	toron	²³² Th	²²⁴ Ra	55 s
²¹⁹ Rn	aktinon	²³⁵ U	²²³ Ra	4s

Levegő radioaktivitásának döntő hányadát a Rn és rövid felezési idejű radionuklidjai adják

Nyílt levegő Rn konc erősen függ a meteorológiai viszonyoktól
 Szárazföldön (1 m) 1-20 Bq/m³, magassággal csökken
 Tengerek, óceánok 0,1-1 Bq/m³

A Rn kőzetekben, talajokban végbemenő migrációs folyamata:

- 1. Rn izotóp keletkezése
- 2. Rn kijutása az ásványi szemcsékből a szemcseközti térbe
- 3. Tényleges migráció folyamata a pórustérben

Visszalökődési effektus – recoil úthossz közeg függő: •Kőzetben 20-70 nm •Levegőben ~60µm •Folyadékban 100 nm

Rn kijutása a pórustérbe – Somlai 2011.

Rn emanáció : direkt-visszalökődési hányad + indirekt-visszalökődési hányad Kiszabadulási esélyek:

- 1. Ásványi szemcsében marad
- 2. Szomszédos szemcsébe kerül
- 3. Pórusvízbe érkezik \rightarrow lefékeződik
- Póruslevegőbe érkezik → nincs fékezés, szomszédos szemcsébe csapódik

Rn emanáció : direkt-visszalökődési hányad + indirekt-visszalökődési hányad

> **Emanációs koefficiens** (η_{Rn}): a kőzetek Ra-tartalmának elbomlása során keletkező Rn mennyiségének egy része jut kis a pórustérbe, és csak ez a hányad lesz képs a további migrációra a Rn élettartama alatt Általában 5-30%-os, de <1% és >50% is

Függ a kőzet

- Ásványi összetételétől
- Szerkezetétől

 nedvességtartalmától - többszörös eltérés nedves és száraz kőzet esetén

Legnagyobb emanálás – szemcsés szerkezetű, nedves kőzetek, ahol az Uásványok zömmel a szemcsék felületén helyezkednek el (homokkövek, gránit)

Rn migrációja – radioaktív bomlás, anyagmegmaradás

$$\frac{\partial}{\partial t} \int_{V} c \, dV = -\int_{F} \vec{j} \, dF - \int_{V} \lambda c \, dV + \int_{V} Q \, dV$$

$$\vec{j} = \vec{j}_{Diff} + \vec{j}_{filtr}$$
Koncentrációkülönbség által hajtott diffúzió
$$\vec{j}_{Diff} = -Dgradc$$
Pórusokat kitöltő közeg mozgása - filtrációja
$$\vec{j} = \vec{j}_{Diff} = -\vec{j}_{Diff}$$

Jfiltr

A divergencia-tétel alapján a radontranszport-egyenlet differenciális alakja

 $\frac{\partial c}{\partial t} = div(D \ gradc) - div(cv) - \lambda c + Q$

$\frac{\partial c}{\partial t} = div(D \ gradc) - div(cv) - \lambda c + Q$

Egyszerűsítő feltételezések

- 1D-s mozgás vertikális
- Időben állandósult, stacioner folyamat
- •Közeg porózus, homogén, izotróp

Rn diffúziós tényezője

Effektív porozitás: kőzetek egymással összefüggő pórusjáratai térfogatának és a teljes térfogatnak a hányadosa

Porózus kőzetben – effektív diffúziós tényező

 $D_{eff} = D_{Rn} \cdot \varepsilon_{eff}$

Közeg porozitása

A radonnak a tiszta

vonatkoztatatott

diffúziós tényezője

póruskitöltő közegre

Ha a talaj pórusait kitöltő anyag nyugalomban van, akkor a Rn migrációt alapvetően meghatározó fizikai folyamat a diffúzió.

D elvi felső határa a Rn-nak a **levegő**re vonatkoztatott D_{effmax} = 0,1 cm²/s **Porózus közeg**ben : szemcsés szerkezetű, porózus, alacsony nedvességtartalmú, laza szerkezetű talajokban, homokokban

$$D_{eff_{max}} = 0,01 - 0,03 \text{ cm}^2/\text{s}$$

Vízben

$$D_{eff_{max}} = 10-5 \text{ cm}^2/\text{s}$$

Diffúziós hossz a forrástól azon távolság, amelyen a koncentráció e-ed részére csökken

$$z_D = \sqrt{\frac{D}{\lambda}}$$

porózus üledékek: néhány m, vízzel telített kőzet, talajpórusok: néhány cm **Rn háttér** - Egy természetes közegben a termelődő Rn-koncentrációját a Ra koncentrációja határozza meg. Szekuláris egyensúly esetén

 $c_i \cdot \lambda_i =$ állandó

Rn-koncentráció visszavezethető az U koncentrációra

$$c_{Rn} = c_{Ra} \cdot \frac{\lambda_{Ra}}{\lambda_{Rn}} = c_U \cdot \frac{\lambda_U}{\lambda_{Rn}}$$

szemcséből kijutás korlátozott
 $c_{háttér} = \eta_{Rn} \cdot c_{Rn} = \frac{Q}{\lambda}$

Egy közeg belsejében a c_{háttér} fog kialakulni, ha ennek értékét transzportfolyamatok nem változtatják meg.

A Rn-koncentráció mélységi eloszlása homogén talajban

$$c = c_{h\acute{a}tt\acute{e}r} \cdot \left(1 - e^{-\frac{Z}{Z_D}}\right)$$
$$c = \frac{Q}{\lambda} \cdot \left(1 - e^{-z \cdot \sqrt{\frac{\lambda}{D}}}\right)$$

Azonban a

minél magasabb a talaj nedvességtartalma, a Rn-koncentráció annál nagyobb és annál hamarabb eléri a telítettségi szintet, c_{háttér}-t

Rn exhaláció (E_{Rn})

A közegben a határfelületre merőlegesen kialakuló Rn fluxust a diffúziós tényező és a koncentráció-gradiens szorzata $J_{Rn} = D \cdot \frac{dc}{dz}$

z = 0 határfelületen, a felszínen mérhető értéke az $E_{Rn} \rightarrow$ talajfelület egységnyi (1 m²) felületén, egységnyi (1 s) idő alatt mekkora radon aktivitás (Bq) távozik

$$J_{Rn(z=0)} = E_{Rn} = c_{h\acute{a}tt\acute{e}r} \cdot \sqrt[2]{D \cdot \lambda}$$

A levegőbe került Rn vertikális transzportja – elsősorban a termikus kicserélődés határozza meg

$$D\left(\frac{d^2c}{dz^2}\right) - \frac{d(cv)}{dz} - \lambda c + Q = 0$$

A Rn-koncentráció mélységi eloszlása
$$\frac{d(cv)}{dz} = 0$$
 $c = \frac{Q}{\lambda} \cdot \left(1 - e^{-z \cdot \sqrt{\frac{\lambda}{D}}}\right)$

$$\frac{d(cv)}{dz} = 0 \text{ és } Q = 0 \qquad D\left(\frac{d^2c}{dz^2}\right) - \lambda c = 0$$

$$c = c_0 \cdot e^{-h \cdot \sqrt{\frac{\lambda}{D_{turb}}}}$$

A talajeredetű légköri radioaktivitás koncentrációja a magassággal exponenciálisan csökken Szárazföldön Rn-222 ~1 Bq/m³, Rn-220 10⁻² Bq/m³

Szarazfoldon Rn-222 ~1 Bq/m³, Rn-220 10⁻² Bq/m³ nagyságrendű

Tengerek, óceánok esetén két nagyságrenddel kisebb

Erősen függ a meteorológiai feltételektől (turbulens diffúzió, csapadék kimosó hatása) és a talajállapottól (nedves, hóval borított, fagyott talaj exhalációja kisebb)

Az értékek pCi/m³ egységekben vannak kifejezve (1 pCi/m³ = 3.7 \cdot 10^{-2} Bq/m³). A számokhoz tartozó koncentráció-intervallumok a következők:

Ra	don (²²³ Rn)	Toron (320Rn)
1	< 25	1 1
2	25- 50	2 1-2
3	50-75	1 2-1
4	75-100	4 1-4
8	100-125	5 4-5
6	125-150	6 - 5
7	> 150	

Maximális értékek mindig kora reggeli órákban fordulnak elő – légköri kicserélődés intenzitása minimális; a legkisebb koncentrációk a délutáni órákban, erős kicserélődési időszak

Évszakos változásoknak megfelelően a nyári hónapokban a konc. évi menetében minimum, délutáni órákban

Rn leányok

- •Egészségkárosító hatás Schneeberger Bergkrankheit (Härting and Hesse 1879)
- •Rövid felezési idő
- •Fémes karakterű, nagy sebességgel és elektromos töltéssel rendelkező ionok

Rn leányok

Table 1. Radionuclides and their activity concentration range in the free atmosphere near ground level (United Nations, 1982; Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit, 1984; Porstendörfer et al., 1990)

Radionuclide	Half-time		Activity concentration (mBq m^{-3})
Natural	³ H	12.3 a	≈20
	¹⁴ C	5736 a	≈ 40
	⁷ Be	53.6 d	1–7
	RnD*	164 μs-26.8 min	1000-50,000
	²¹⁰ Pb	22.3 a	0.2-1
	²¹⁰ Po	138.4 d	0.03-0.3
	²¹² Pb	10.6 h	20-1000
	²¹² Bi	60.6 min	10-700
Artificial	¹³¹ I	8.04 d	< 0.0001 (16,000 ⁺)
	¹³⁷ Cs	30.1 a	0.0005-0.005 (4000†)
	¹⁰⁶ Ru	386.2 d	0.0001–0.002 (2000 [†])

* Short-lived radon daughters: ²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi and ²¹⁴Po.

⁺After the nuclear accident in Chernobyl the highest value in Göttingen, 2–3 May 1986.

J. Porstendörfer (1994)

A légköri Rn-koncentráció alapvetően az exhalációtól és a légköri felhígulási folyamatoktól függ, ez utóbbit meteorológiai viszonyok befolyásolják.

10³-10⁴ nagyságrendű koncentráció gradiens a szilád és levegő fázis között – folyamatos radon fluxus hajtó ereje a kőzetekben lévő radioaktív elemek bomlása

Eliminációs folyamatok:

- Radioaktív bomlás
- •Kimosódási folyamatok:
 - Száraz ülepedés
 - •Nedves ülepedés
 - •Rainout (in-cloud scavenging)
 - Washout (below-cloud scavenging)

Fig. 1. Radon, thoron, and their decay products in the open atmosphere.

Rn leányok

Nem sokáig maradnak a levegőben

- 1. <1s alatt a nyomgázokkal és gőzökkel reakcióba lépnek, egy részük ionos állapotban marad a levegőben, d=0,5-5nm UNATTACHED FRACTION
- 2. 1-100 s alatt por és aeroszol részecskék felületére tapadnak ATTACHED FRACTION

J. Porstendörfer (1994)

A kötődés alapvetően diffúzió vezérelt folyamat az elektrosztatikai erők és a kinetikus gázelmélet figyelembe vételével •d>1mm diffúziós törvény érvényesül •d<0,1mm kinetikus gázelmélet

Fig. 4. The attachment coefficient of the radon/thoron daughters as a function of aerosol size (Porstendörfer and Mercer, 1978a; Porstendörfer et al., 1979).

Rn leányok

- 3. Deszorpció az aeroszol részecskékről recoil effektus révén
- 4. Eltávozik a levegőből
 - Porrészecskékkel gravitációs úton kihullik a levegőből Tehetetlenségi erők, interception, Brown-mozgás befolyásával
 - A környező tárgyak, falak felületére válik ki
 - Turbulens áramlás
 - Kiülepedés függ a részecske mérettől, felület érdességétől

Ülepedési sebesség

 $v_{g} = \frac{\varphi(u)}{Z(-1)},$

$$\phi(d) = [D_{T}(z) + D_{p}(d)] \frac{dZ(z, d)}{dz} + v_{s}(d)Z(z, d),$$

$$v_{g} = \frac{\phi(d)}{Z(z_{1},d)},$$

Fig. 6. Deposition velocity (v_g) normalized by the friction velocity (u^*) as a function of the aerosol particle diameter

×	Simulated grass	
•	Filter paper	(Porstendörfer et al., 1978b; Ahmed, 1979)
$ \nabla$	Al foil	
\odot	Barley	
*	Grass	(Chamberlain, 1966)
\oplus	Water	(Möller, 1970)
\bigtriangleup	Filter	(Clough, 1973)
\diamond	Filter	(Sehmel, 1973; Sehmel et al., 1974)
0	Grass	(Little and Wiffen, 1977)
+	Grass	(Horbert et al., 1976)
	Wheat	(Butterweck, 1991)

Fig. 8. Diurnal variation of the radon concentration, temperature, wind velocity and temperature gradient for three weather conditions 2 m above the ground (ground with canopy of wheat) averaged over the time period: 3-30 July 1989 (Porstendörfer *et al.*, 1994b).

Rn koncentráció, hőmérséklet, szélsebesség, vertikális hőmérsékleti gradiens napi ingadozása 3 különböző időjárási helyzet esetén

- Napos időjárási helyzet, stabil légköri viszonyok, T gradiens az éjjel-nappal szerint változik, magas Rn konc éjjel, hajnalban; délben, délután negatív T gradiens, keveredés, alacsony Rn konc
- Felhős időjárási helyzet, alacsonyabb T gradiens a kisebb értékek felé tolja el a Rn konc-t
- 3. Szeles időjárási helyzet

- I. López-Coto, J.L. Mas, J.P. Bolivar (2013)
- a. 222Rn flux map on surface (Bq m2 h1) for the average month of January for the period 1957-2002.
- b. 222Rn flux map on surface (Bq m2 h1) for the average month of July for the period 1957-2002.

Fig. 1. July and December monthly average radon²²² concentrations (mBq SCM⁻¹) at the earth's surface for TM3_CG (7.5°-10°), TM3_FG (3.75°-5°), TM3_VG (2.5°-2.5°) and ECHAM_T42 (2.8°-2.8°).

Frank Dentener, Johann Feichter, Ad Jeuken (1999)

Felhasznált irodalom:

- Dr. Barótfi István (szerk.) (2000): Környezettechnika. *Mezőgazda kiadó,* Digitális Tankönyvtár.
- Bencze Pál, Major György, Mészáros Ernő (1982): Fizikai meteorológia. Akadémia Kiadó, Budapest.
- F. Dentener, J. Feichter, A. Jeuken (1999): Simulation of the transport of Rn-222 using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements. *Tellus B: Chemical and Physical Meteorology*, 51:3, 573-602.
- J. Paatero, A. Ioannidou, J. Ikonen, J. Lehto (2017): Aerosol particle size distribution of atmospheric lead-210 in northern Finland. *Journal of Environmental Radioactivity*, 172., 10-14.
- I. López-Coto, J.L. Mas, J.P. Bolivar (2013): A 40-year retrospective European radon flux inventory including climatological variability. *Atmospheric Environment*, 73., 22-33.
- J. Porstendörfer (1994): Properties and behaviour of radon and thoron and their decay products in the air. *Journal of Aerosol Science*, Vol. 25, p 219-263.
- Dr. Somlai János (szerk.) (2011): Sugárvédelem. Környezetmérnöki Tudástár, 14. kötet, Veszprém.
- World Nuclear Association <u>www.world-nuclear.org/</u>

Fig. 4. Left panel: Weather situation in Europe 8 September 2010 12 UTCThe black circle indicates the location of Sodankylä (Chart: Finnish Meteomological Institute). Right panel: 120 h long Fientra air mass back-trajectories arriving to Sodankylä 8 September 2010 on the 950 hPa pressure level 00, 08,06, 09, 12,15, 18, and 21 UTC.

Sodankyla, 5-d back trajectories, 2010-03-27 00 (950 hPa)

Fig. 5. Left panel: Weather situation in Europe 27 March 2010 12 UTC (Clart: Finnish Meteorological Institute), Right panel: 120 hlong Flextra air mass back-trajectories antiving to iodankyla 27 March 2010 on the 950 hPa pressure level 00, 03,06, 09, 12,15, 18, and 21 UTC.

J. Paatero, A. Ioannidou, J. Ikonen, J. Lehto (2017):

Fig. 1. The average relative activity concentration of ²¹⁰Pb in different particle size classes in spring and summer. The lower ends of the lines are arbitrary.

Barlangi radonkoncentráció tipikus változása